logo
Vespa python API
API Reference
Initializing search
    GitHub
    GitHub
    • Hybrid Search - Quickstart
    • Hybrid Search - Quickstart on Vespa Cloud
    • Advanced Configuration
    • Authenticating to Vespa Cloud
    • Application packages
    • Querying Vespa
    • Read and write operations
    • Evaluating a Vespa Application
    • Troubleshooting
      • Matryoshka embeddings in Vespa cloud
      • Billion scale vector search with cohere embeddings cloud
      • chat with your pdfs using colbert langchain and Vespa cloud
      • Cohere binary vectors in vespa cloud
      • colbert standalone Vespa cloud
      • colbert standalone long context Vespa cloud
      • colpali benchmark vqa vlm Vespa cloud
      • Colpali document retrieval vision language models cloud
      • Cross encoders for global reranking
      • Evaluating with snowflake arctic embed
      • Feed performance
      • Feed performance cloud
      • Lightgbm with categorical mapping
      • Lightgbm with categorical
      • Mixedbread binary embeddings with sentence transformers cloud
      • Mother of all embedding models cloud
      • Multi vector indexing
      • Multilingual multi vector reps with cohere cloud
      • pdf retrieval with ColQwen2 vlm Vespa cloud
      • Pyvespa examples
      • Scaling personal ai assistants with streaming mode cloud
      • simplified retrieval with colpali vlm Vespa cloud
      • Turbocharge rag with langchain and vespa streaming mode cloud
      • Video search twelvelabs cloud
      • Visual pdf rag with vespa colpali cloud
      • Application
      • Deployment
      • Evaluation
      • Exceptions
      • IO
      • Package
        • Grouping

    API Reference

    • vespa
      • application
      • deployment
      • evaluation
      • exceptions
      • io
      • package
      • querybuilder
        • builder
          • builder
        • grouping
          • grouping
    Made with Material for MkDocs