klm = keras_linear_model(
number_documents_per_query=10,
number_features=5
)ranking
Reference API related to the ranking framework
keras_linear_model
keras_linear_model (number_documents_per_query, number_features)
linear model with a lasso constrain on the kernel weights.
| Type | Details | |
|---|---|---|
| number_documents_per_query | Number of documents per query to reshape the listwise prediction. | |
| number_features | Number of features used per document. | |
| Returns | Sequential | The uncompiled Keras model. |
Usage:
keras_lasso_linear_model
keras_lasso_linear_model (number_documents_per_query, number_features, l1_penalty, normalization_layer:Optional=None)
linear model with a lasso constrain on the kernel weights.
| Type | Default | Details | |
|---|---|---|---|
| number_documents_per_query | Number of documents per query to reshape the listwise prediction. | ||
| number_features | Number of features used per document. | ||
| l1_penalty | Controls the L1-norm penalty. | ||
| normalization_layer | typing.Optional | None | Initialized normalization layers. Used when performing feature selection. |
| Returns | Sequential | The uncompiled Keras model. |
Usage:
kllm = keras_lasso_linear_model(
number_documents_per_query=10,
number_features=5,
l1_penalty=0.01
)keras_ndcg_compiled_model
keras_ndcg_compiled_model (model, learning_rate, top_n)
Compile listwise Keras model with NDCG stateless metric and ApproxNDCGLoss
| Details | |
|---|---|
| model | Uncompiled Keras model |
| learning_rate | Learning rate used in the Adagrad optim algo. |
| top_n | Top n used when computing the NDCG metric |
Usage:
compiled_klm = keras_ndcg_compiled_model(
model=klm,
learning_rate=0.1,
top_n=10
)LinearHyperModel
LinearHyperModel (number_documents_per_query, number_features, top_n=10, learning_rate_range=None)
Define a KerasTuner search space for linear models
linear_hyper_model = LinearHyperModel(
number_documents_per_query=10,
number_features=10,
top_n=10,
learning_rate_range=[1e-2, 1e2]
)LassoHyperModel
LassoHyperModel (number_documents_per_query, number_features, trained_normalization_layer, top_n=10, l1_penalty_range=None, learning_rate_range=None)
Define a KerasTuner search space for lasso models
ListwiseRankingFramework
ListwiseRankingFramework (number_documents_per_query, batch_size=32, shuffle_buffer_size=1000, tuner_max_trials=3, tuner_executions_per_trial=1, tuner_epochs=1, tuner_early_stop_patience=None, final_epochs=1, top_n=10, l1_penalty_range=None, learning_rate_range=None, folder_dir='/home/runner/work/learntorank- DEPRECATED/learntorank-DEPRECATED')
Listwise ranking framework